Jak používat logaritmický vládce
Osoba, která není obeznámen s použitím logaritmické linie, zdá se, že bude pracovat picasso. Má alespoň tři různé váhy, téměř každá čísla nejsou ani ve stejné vzdálenosti od sebe. Ale pochopil co, co, pochopíte, proč byl logaritmický pravítko tak pohodlný během vynálezu kapesní kalkulačky. Oprava požadovaných čísel v měřítku můžete znásobit dvě libovolná čísla mnohem rychleji než provádění výpočtů na papíře.
Kroky
Část 1 z 4:
obecná informacejeden. Věnujte pozornost intervalům mezi čísly. Na rozdíl od běžného pravidla není vzdálenost mezi nimi stejná. Naopak je určen zvláštním "logaritmickým" vzorcem, méně na jedné straně a více na straně druhé. Díky tomu můžete v požadovaném způsobu kombinovat dvě váhy a získat odpověď na násobící úkol, jak je popsáno níže.

2. Štítky na stupnici. Každá měřítko logaritmické čáry má abecedu nebo symbolické označení na levé nebo pravé straně. Obecně přijaté označení na logaritmických pravidlech jsou popsány níže:

3. Naučte se porozumět rozdělení stupnice. Podívejte se na svislé čáry na stupnici C nebo D a seznámíte se s tím, jak jsou čteny:

4. Neočekávejte, že dostanete přesné odpovědi. Při čtení měřítka budete často muset přijít na "s největší pravděpodobností předpoklad", když odpověď nebude klesat na záchranu. Logaritmická linka se používá pro rychlé počítání a ne pro maximální přesnost.
Část 2 ze 4:
Násobeníjeden. Zapište si čísla, která se násobíte. Zapište si čísla, která podléhají násobení.
- V příkladu 1 této sekce vypočítáme, kolik bude 260 x 0,3.
- V příkladu 2 vypočítáme, kolik bude 410 x 9. Je to trochu složitější než příklad 1, takže nejprve zvažte jednodušší úkol.

2. Přesuňte desetinná místa pro každé číslo. Logaritmický pravítko má čísla od 1 do 10. Přesuňte desetinný bod každého násobení čísla tak, aby odpovídaly jejich hodnotám. Po řešení problému se pohybujeme desetinnou tečkou v odezvě na požadovanou polohu, která bude popsána na konci sekce.

3. Najděte menší čísla na D, pak přesuňte měřítko. Najít menší číslici na d. Posuňte měřítko tak, aby "1" vlevo (levý index) byl umístěn na stejném řádku s tímto číslem.

4. Přesuňte ukazatel kovů na druhou číslici na měřítku C. Ukazatel je kovový objekt, který se pohybuje po celou řadě. Zarovnejte ukazatel s druhou číslici vašeho úkolu na měřítku C. Ukazatel uvádí odpověď na úkol na D. Pokud se takto nepohne, přejděte k dalšímu kroku.

Pět. Pokud se ukazatel nepohne na odpověď, použijte správný index. Pokud je ukazatel zablokován oddílem ve středu řádku nebo odpověď je umístěna mimo měřítko, pak použijte malý jiný přístup. Posuňte měřítko C tak, aby Správný index nebo 1 vpravo bylo umístěno nad velkým koeficientem vašeho úkolu. Přesuňte ukazatel na jiný koeficient na měřítku C a přečtěte si odpověď na stupnici D.

6. Puk správný desetinný bod. Bez ohledu na vytvoření násobení bude vaše odpověď vždy číst na stupnici D, která obsahuje pouze čísla od jedné do deseti. Nemůžete udělat bez předpokladů a mentálním počítáním, abyste určili umístění desetinného místa ve skutečné reakci.
Část 3 ze 4:
Výstavba čtverce a kostkajeden. Výstavba náměstí na D a váhy. Tyto dvě stupnice jsou obvykle pevné. Stačí přesunout ukazatel kovů na hodnotu D a hodnota na stupnici A bude odpovídat druhému stupni čísla. Stejně jako v případě násobení bude poloha desetinného místa musí být stanovena samostatně.
- Chcete-li například vyřešit 6.1, přesuňte ukazatel na 6.1 na stupnici d. Odpovídající hodnota na stupnici A bude 3,75.
- Počet 6,1 6 x 6 = 36. Umístěte desetinnou tažení, abyste získali odpověď, která přibližně odpovídá této hodnotě: 37.5.
- Upozorňujeme, že přesná odpověď bude 37,21. Odpověď na řádku dává chybu v 1%, což je dostačující pro praktické úkoly.

2. Výstavba krychle na stupnicích D & K. Jen jsme viděli jako měřítko A, což odpovídá stupnici D, snížena o 1/2, umožňuje vytvořit číslo na náměstí. Stejně tak měřítko K, který odpovídá stupnici D, snížena o 1/3, umožňuje vytvořit číslo v kostce. Stačí přesunout ukazatel na hodnotu D a přečtěte si výsledek na stupnici k. Spočítejte umístění desetinného místa.
Část 4 z 4:
Extrakce čtverce a kubického kořenejeden. Zapište si číslo do exponenciální reprezentace pro extrakci čtverečního kořene. Jako vždy existují pouze hodnoty od 1 do 10 na lince, takže budete muset extrahovat druhý kořen Zaznamenejte číslo v exponenciální reprezentaci.
- Příklad 3: Pro vyřešení √ (390) zapište úlohu jako √ (3,9 x 10).
- Příklad 4: Pro vyřešení √ (7100) zapište úlohu jako √ (7,1 x 10).

2. Určete, jakým způsobem musí být použita měřítko. Chcete-li odebrat druhou odmocninu čísla, spusťte, přesuňte ukazatel na toto číslo na stupnici A. Ale protože měřítko A je aplikován dvakrát, je nutné rozhodnout, co použít. To pomůže následující pravidla:

3. Přesuňte ukazatel mapy a. Zatímco snižte exponent deseti a přesuňte kovový ukazatel na stupnici A na požadovanou hodnotu.

4. Najděte odpověď na stupnici d. Přečtěte si hodnotu na stupnici D, ke které se ukazatel vznáší. Přidejte jej "x10". Chcete-li počítat n, vezměte výchozí stupeň 10, zaokrouhlete na nejbližší i číslo a rozdělte 2.

Pět. Podobný způsob odstranění kubických kořenů na stupnici K. Proces extrakce kubického kořenu je velmi podobný. Nejdůležitější věcí je zjistit, který ze tří váhy K by měly být použity. Chcete-li to udělat, rozdělte počet čísel vašeho čísla na tři a zjistěte zbytky. Pokud zbytek 1 použijte první měřítko. Pokud 2, použijte druhé měřítko. Pokud 3, použijte třetí stupnici (jiný způsob, než bude opakovaně zvažován z prvního měřítka na třetí, dokud nedosáhnete počtu čísel ve vaší odpovědi).
Tipy
- Logaritmický pravítko také umožňuje vypočítat další funkce, zejména pokud má logaritmus měřítko, trigonometrické výpočetní stupnice nebo jiné specializované váhy. Pokuste se je zobrazit na vlastní stránku nebo si přečíst informace na internetu.
- Můžete použít metodu násobení pro konverzi mezi dvěma jednotkami měření. Například, protože 1 palce = 2,54 centimetrů, úkol "převést 5 palců až centimetrů" může být interpretován jako příklad násobení 5 x 2,54.
- Přesnost logaritmického pravítka závisí na počtu značek rozlišitelných měřítka. Čím větší je délka čáry, tím vyšší je jeho přesnost.
Varování
- Nespadají se logaritmickou tepelnou linii a vlhkosti. Konstrukce a sušení struktury sníží přesnost linky.